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Abstract
The time-independent bound-state perturbation theory derived for the quantum
probability equation (Milward G C and Wilkin C 2000 J. Phys. A: Math. Gen.
33 7353) is extended to treat the scattering domain. Formulae for the changes in
the partial wave phase shifts are derived to third order in the perturbing potential.
The results are compared with those obtained for analytically soluble problems.

PACS numbers: 0365G, 0365N

1. Introduction

When the wavefunction u(r) in a particular angular momentum state satisfies real boundary
conditions, it is possible to recast the single-particle time-independent partial wave Schrödinger
equation into one for the density distribution P(r) = [u(r)]2. This leads, in the s-wave case,
to the non-linear second-order equation

P(r) P ′′(r) = 1
2 [P ′(r)]2 + 2[U(r) − E]P(r)2 (1.1)

where both the particle energy E and the spherically symmetric potential U(r) are measured in
units of h̄2/2m. The equation is also valid for higher partial waves provided that a centrifugal
barrier term �(� + 1)/r2 is included in an effective potential.

In a previous paper [1], hereinafter referred to as I, we developed time-independent
perturbation theory in the bound state domain for this and an equivalent third-order linear
equation. In this approach, one cannot exploit orthogonality of different wavefunctions.
Standard perturbation theory, involving the coupling to the excited states, is therefore not
applicable. We derived instead a variant of the results of Bender [2], where the energy shift
depends only upon the unperturbed probability density and the change in the potential. Explicit
knowledge of neither the unperturbed potential nor the corresponding spectrum is required. It
is the purpose of this paper to show that similar techniques can be used in the continuum.

Perturbation formulae for s-waves are derived in section 2 where, for simplicity, we assume
that the potential vanishes beyond a finite radius R. As shown in section 3, the formulae are
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still valid in the limit of R → ∞, provided the perturbation vanishes faster than 1/r at large
distances. Alternative forms for the second-order phase shift change are applied in section 4
to simple soluble cases. The relationship to some other perturbation approaches is discussed
in section 5. Although most of our work deals specifically with the s-wave case, the formulae
can be generalised to higher partial waves and the major changes required to accomplish this
are outlined in section 6. The connection between bound- and scattering-state perturbation
theory is discussed in section 7. Although the first-order bound-state formula may be obtained
by simple extrapolation from positive energies, this is not straightforward for the second order.
Some general conclusions are drawn in section 8.

2. S-wave scattering state perturbation theory

We here confine ourselves to s-wave scattering from a potential which vanishes identically for
r � R, where R is some finite radius. The associated probability distribution behaves at large
r as

P̃ (r) = 1

k2
sin2(kr + δ) for r � R (2.1)

where δ is the s-wave phase shift. The symbol P̃ distinguishes the scattering from the bound
state density used in I, which satisfies rather an integral boundary condition. The probability
density furthermore vanishes at the origin:

P̃ (0) = 0. (2.2)

We now suppose that the probability equation (1.1) may be solved for some potential
U0(r) to give a density distribution P̃0(r) and a phase shift δ0. Consider then the perturbation
expansion

U(r) = U0(r) + λW(r) (2.3)

P̃ (r) = P̃0(r) + λ P̃1(r) + λ2 P̃2(r) + λ3 P̃3(r) + · · · (2.4)

δ = δ0 + λ δ1 + λ2 δ2 + λ3 δ3 + · · · (2.5)

where λ is some small parameter. It is our aim to derive expressions for the P̃n(r) and δn in
terms of P̃0(r) and W(r).

2.1. First-order phase shift correction

The boundary condition of equation (2.2) requires that P̃n(0) = 0 for all n. Inserting
equations (2.4), (2.5) into (2.1) and expanding to first order in λ gives the large-r limit:

P̃1(r) = δ1
1

k2
sin(2kr + 2δ0) for r � R. (2.6)

As in I, introduce the perturbation expansion of equation (2.4) into the probability
equation (1.1) and expand to first order in λ. After eliminating the combination [U0(r) − E]
by use of the unperturbed equation, the result may be integrated to give

P̃1
′(r) − P̃1(r)P̃0

′(r)

P̃0(r)
= 2

∫ r

0
W(r ′) P̃0(r

′) dr ′. (2.7)

For r � R, we can use the asymptotic forms of equations (2.1), (2.6) to evaluate the
left-hand side and this leads to the first-order change in the phase shift:

δ1 = −k

∫ ∞

0
W(r) P̃0(r) dr. (2.8)
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2.2. First-order probability density correction

The first-order change in the probability density is obtained by dividing equation (2.7) by P̃0(r)

to leave an exact derivative which can be integrated as

P̃1(r) = 2P̃0(r)

∫ r

R

1

P̃0(r ′)
dr ′

∫ r ′

0
W(r ′′) P̃0(r

′′) dr ′′ + C(R) P̃0(r) (2.9)

where C(R) is an integration constant whose value depends upon R.
The integration over r ′′ is now split into two intervals, R → r ′ and 0 → R. The latter

integral is determined by the first-order phase shift change of equation (2.8). Furthermore, for
r � R, the asymptotic behaviours of equations (2.1), (2.6) may be employed on the left- and
right-hand sides and the value of C(R) deduced. Hence

P̃1(r) = 2P̃0(r)

∫ r

R

1

P̃0(r ′)
dr ′

{∫ r ′

R

W(r ′′) P̃0(r
′′) dr ′′ − δ1

k

}
+ 2δ1 cot(kR + δ0) P̃0(r).

(2.10)

2.3. Second-order corrections

The λ2 terms which result from the insertion of equations (2.3)–(2.5) into (2.1) lead, after the
elimination of the potential, to

P̃2
′(r) − P̃2(r)P̃0

′(r)

P̃0(r)
+
P̃1(r)

2P̃0
′(r)

2P̃0(r)2
− P̃1(r)P̃1

′(r)

2P̃0(r)
=
∫ r

0
P̃1(r

′)W(r ′) dr ′. (2.11)

The asymptotic boundary condition on P̃2(r) can be established by introducing the phase
shift expansion of equation (2.5) into (2.1);

P̃2(r) = δ2

k2
sin(2kr + 2δ0) +

δ 2
1

k2
cos(2kr + 2δ0) for r � R. (2.12)

When this is employed in equation (2.11), we find that

δ2 = −k

2

∫ ∞

0
W(r) P̃1(r) dr

= − k

∫ ∞

0
W(r) P̃0(r) dr

∫ r

R

1

P̃0(r ′)
dr ′
{∫ r ′

R

W(r ′′) P̃0(r
′′) dr ′′ − δ1

k

}
+δ 2

1 cot(kR + δ0). (2.13)

Turning now to the probability correction, equation (2.11) is a linear first-order differential
equation for P̃2(r). The solution with the correct boundary conditions is

P̃2(r) = P̃1(r)
2

4P̃0(r)
+ P̃0(r)

∫ r

R

1

P̃0(r ′)

{∫ r ′

R

W(r ′′) P̃1(r
′′) dr ′′ − 2δ2

k

}
dr ′

+2 δ2 P̃0(r) cot (kR + δ0) − δ 2
1 P̃0(r). (2.14)

Higher-order terms are harder to evaluate and here we merely quote the formal result for
the third order change in the phase shift:

δ3 = −k

3

∫ ∞

0
W(r) P̃2(r) dr (2.15)

which can be evaluated using equation (2.14).
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3. The long-range limit

It is not possible to take the R → ∞ limit directly in equation (2.13) because of the explicit
cot(kR + δ0) term. This problem can be circumvented by defining the kernel

K̃(r ′, r) =
∫ r ′

r

1

P̃0(r ′′)
dr ′′ (3.1)

which differs from the analogous K used in I for the bound state case through the absence of
multiplicative unperturbed probability factors. For the free unperturbed probability density,

P̃ free
0 (r) = 1

k2
sin2[kr + δ0] (3.2)

the corresponding kernel can be evaluated explicitly

K̃ free(r ′, r) =
∫ r ′

r

1

P̃ free
0 (r ′′)

dr ′′ = k cot(kr + δ0) − k cot(kr ′ + δ0). (3.3)

The difference between the free and interacting kernel,

�K(r ′, r) = K̃(r ′, r) − K̃ free(r ′, r) (3.4)

remains finite when r or r ′ → ∞.
After grouping terms and integrating by parts, the expression for P̃1(r) can be reduced to

P̃1(r) = 4 P̃0(r) [k cot(kr + δ0) + �K(∞, r)]
∫ r

0
W(r ′) P̃0(r

′) dr ′. (3.5)

and that for the phase shift to

δ2 = 2k2
∫ ∞

0
W(r) P̃0(r) cot(kr + δ0) dr

∫ r

0
W(r ′) P̃0(r

′) dr ′

+2k
∫ ∞

0
W(r) P̃0(r)�K(∞, r) dr

∫ r

0
W(r ′) P̃0(r

′) dr ′. (3.6)

It is crucial to note that the integrals converge at large r and, in fact, the limit R → ∞ has
been taken here.

An alternative form for δ2 can be found by defining the auxiliary function

δ1(r) = −k

∫ r

0
W(r ′) P̃0(r

′) dr ′ (3.7)

for which δ1(r) → δ1 as r → ∞. Then

δ2 = δ 2
1 cot δ0 +

1

k

∫ ∞

0

{
δ1(r)

2

P̃0(r)
− δ 2

1

P̃ free
0 (r)

}
dr. (3.8)

This is probably the most important result of this paper. Just as for the energy shift for
bound states investigated in I, the expression only involves two quadratures. The first term in
equation (3.8) arises because the phase shift has been expanded in a perturbation series and it
would not be present in an expansion for cot δ.

Although the integrands in equations (3.6) and (3.8) are well behaved at large r , there may
be singularities in the integrands due to the vanishing of P̃0(r) at finite r . These are similar
in nature to those occurring for excited states in the discrete spectrum studied in I. We adopt
the same strategy of considering first the problem where k has a small positive imaginary part,
k → k(1 + iε), taking the limit ε → 0 at the end of the calculation. Though this causes no
problem in the analytic examples considered in the next section, it is more tedious to implement
in numerical evaluations.
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Formulae for higher-order phase changes can also be established in the R → ∞ limit.
For example, starting from equation (2.15),

δ3 = −δ 3
1 +

2

3
δ1 δ2 cot(δ0) − k

3

∫ ∞

0

P̃1(r)
2 W(r)

4P̃0(r)
dr +

2

3k

∫ ∞

0

(
δ2(r) δ1(r)

P̃0(r)
− δ2 δ1

P̃ free
0 (r)

)
dr.

(3.9)

4. Examples

4.1. Scattering length problems

The scattering length a = − lim
k→0

{δ/k} may be expanded in a perturbation series similar to that

of equation (2.5) for the phase shift;

a = a0 + λ a1 + λ2 a2 + λ3 a3 + · · · . (4.1)

Outside the range of the potential, the unperturbed probability density behaves as

P̃0(r) → (r − a0)
2. (4.2)

In terms of the function

a1(r) =
∫ r

0
W(r ′) P0(r

′) dr ′ (4.3)

the first correction to the scattering length is a1 = limr→∞{a1(r)}. The zero-energy limit of
equation (3.8) is

a2 = a 2
1

a0
−
∫ ∞

0

{
a1(r)

2

P̃0(r)
− a 2

1

P̃ free
0 (r)

}
dr (4.4)

where P̃ free
0 (r) is given by equation (4.2) for all values of r .

Consider first an attractive finite square well, U0(r) = −q2 θ(R − r), whose depth is
perturbed by W(r) = −θ(R − r). Elementary manipulation of the explicit solution shows
that the perturbations in the scattering length are

a0 = R − tan(qR)/q (4.5)

a1 = − 1

2q3
tan qR +

R

2q2
sec2 qR (4.6)

a2 = 3

8q5
tan qR − 3R

8q4
sec2 qR +

R2

4q3
sec2 qR tan qR. (4.7)

The auxiliary function of equation (4.3) becomes

a1(r) = − 1

4q3
sin 2qr sec2 qR +

r

2q2
sec2 qR (4.8)

for r � R. Taking r = R, this yields the result of equation (4.6), and using this form in
equation (4.4), leads directly to the desired result of equation (4.7).

For any specific potential, it is possible to evaluate the corrections due to a perturbation
in other ways. These alternatives are not as simple if one is given instead the unperturbed
probability density. As an example, suppose that at zero energy

P̃0(r) = r2(r + b)2

(r + a + b)2
(4.9)
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for which the unperturbed scattering length a0 = a. The perturbation W(r) = δ(r −R) leads
to

a1 = R2(R + b)2

(R + a + b)2

a2 = a 2
1

{
2a(a + b)

b3
�n

(
b + R

R

)
− (a + b)2

b2R
− a2

b2(b + R)

}
.

(4.10)

4.2. The centrifugal barrier potential

In the case of the angular momentum barrier potential

U0(r) = �(� + 1)

r2
(4.11)

the probability density is given by

P̃0(r) = [r j�(kr)]
2 (4.12)

with a phase shift δ0 = − 1
2� π . For the perturbation

λW(r) = λ

r2
(4.13)

the probability density is similar to that of equation (4.12) but with an effective angular
momentum of

�′ =
√(

� +
1

2

)2

+ λ − 1

2
≈ � +

λ

(2� + 1)
− λ2

(2� + 1)3
+ O(λ3). (4.14)

The phase shift perturbations are therefore

δ1 = − π

2(2� + 1)
(4.15)

δ2 = π

2(2� + 1)3
. (4.16)

From equation (2.8) the first-order perturbation is

δ1 = −k

∫ ∞

0

1

r2
[r j�(kr)]

2 dr = − π

2(2� + 1)
(4.17)

which agrees with equation (4.15).
Turning to the second-order perturbation, the kernel of equation (3.1) becomes

K̃(r ′, r) =
∫ r ′

r

dr ′′

r ′′ 2 j�(kr ′′)2
= k

[
n�(kr

′)
j�(kr ′)

− n�(kr)

j�(kr)

]
(4.18)

which means that

δ2 = −2
∫ ∞

0
j�(x) n�(x) dx

∫ x

0
[j�(y)]

2 dy. (4.19)

The latter integration can be performed using hypergeometric functions and leads to the
expected result of equation (4.16).

Our perturbation method can therefore handle potentials which behave asymptotically like
1/r2, and this relevant to the discussion of higher partial waves carried out in section 6.
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5. Comparison with other approaches

5.1. Born approximations

In the limiting case where the unperturbed potential vanishes, the unperturbed s-wave density
is that of a plane wave P̃0(r) = sin2(kr)/k2, and the first-order change in the phase shift of
equation (2.8) becomes

δ1 = −1

k

∫ ∞

0
W(r) sin2(kr) dr (5.1)

which is just the first Born approximation for the phase shift [3].
The standard second Born approximation for the phase shift can be most easily derived

using the variable phase equation approach [4];

δ2 = 1

k2

∫ ∞

0
W(r) sin(2kr) dr

∫ r

0
W(r ′) sin2(kr ′) dr ′. (5.2)

This is the same result as we find from equation (3.6) by putting δ0 = 0 and replacing P̃0(r)

by its free form.

5.2. The two-potential formula

For the general unperturbed problem, the first-order change must correspond to that given by
the two-potential formula of Gell-Mann and Goldberger [3, 5]. They show that the change in
the s-wave scattering amplitude f induced by an extra potential λW(r) is

f1 = −e2iδ0 λ

∫ ∞

0
W(r) P̃0(r) dr (5.3)

where the non-standard phase factor in front of the integration arises because of the standing-
wave boundary conditions.

Now, to order λ, f1 = e2iδ0λ δ1/k and, equating this to equation (5.3) leads immediately
to our first-order expression of equation (2.8).

6. Higher partial waves

The probability equation (1.1) is valid for an arbitrary �th partial wave if the centrifugal barrier
contribution is included in an effective potential U(r). Furthermore, apart from an explicit
extra 1

2�π term, the boundary condition of equation (2.1) still holds provided that we can let
the cut-off radius R go to infinity. In this sense, therefore, we have already treated higher
partial waves in the 1/r2 example discussed in section 4.2, the limit of R → ∞ causing no
difficulty.

However, the centrifugal barrier term is normally included explicitly when solving the
Schrödinger equation in order that the integrations converge quicker at large values of r . We
want to show how this can be achieved in the present approach.

For simplicity, suppose that both the unperturbed and perturbed potentials vanish for
r > R1. In the region R1 < r � R there is then only the centrifugal barrier contribution and
the boundary condition of equation (2.1) is replaced by

P(r) = r2 [cos δ� j�(kr) − sin δ� n�(kr)]
2 = P̃ cfb

0 (r) for r � R1 (6.1)

→ 1

k2
sin2

(
kr + δ� − 1

2
�π

)
as r → ∞. (6.2)

Hence the phase shift that we have used so far should be replaced by δ → δ� − π�/2.
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Whereas the formula of equation (3.8) is valid without modification, it is more convenient
to split the integration as

δ2 = δ 2
1 cot δ0 +

1

k

∫ R1

0

{
δ1(r)

2

P̃0(r)
− δ 2

1

P̃ free
0 (r)

}
dr + �cfb (6.3)

where

�cfb = δ 2
1

k

∫ ∞

R1

{
1

P̃ cfb
0 (r)

− 1

P̃ free
0 (r)

}
dr. (6.4)

For r � R1, only the centrifugal barrier is operative and we have replaced P̃0(r) by the large-r
form of equation (6.1). The integrations in equation (6.4) can be carried out explicitly to give

�cfb = −δ 2
1

[
sin δ� j�(kR1) + cos δ� n�(kR1)

cos δ� j�(kR1) − sin δ� n�(kR1)
− cot(kR1 + δ� − �π/2)

]
. (6.5)

The integrations in equation (6.3) are then only over the range where the perturbation is non-
vanishing.

7. Extrapolation to bound states

When a system has a loosely bound state, one would hope to be able to extrapolate the
perturbation theory results from the scattering domain to the bound state pole in order to
retrieve the formulae already established in I. Although this is indeed the case for the first-
order corrections, the procedure is not straightforward in second order. To illustrate this,
consider the case when the S-matrix has a bound state at E = −α2, i.e. at k cot δ = −α. In
the vicinity of the pole

S = e2iδ = G(k)

(α + ik)
(7.1)

where G(k) is well behaved. Expanding the pole position in a perturbation series

α = α0 + λα1 + λ2 α2 + O(λ3) (7.2)

we see that, for k ≈ iα0,

α1 = 1

k
(α 2

0 + k2) δ1 (7.3)

α2 = 1

k
(α 2

0 + k2)
(
δ2 +

α0

k
δ 2

1

)
. (7.4)

The consequent changes in the bound state energy are

E1 = −2α0

k
(α 2

0 + k2) δ1 (7.5)

E2 = −2α0

k
(α 2

0 + k2)
(
δ2 +

α0

k
δ 2

1

)
− E 2

1

4α 2
0

. (7.6)

On the other hand, it was shown in I that bound state perturbation theory gives

E1 =
∫ ∞

0
W(r) P0(r) dr (7.7)

E2 = −
∫ ∞

0

1

P0(r)
[Q(r)]2 dr (7.8)
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where

Q(r) =
∫ r

0

(
W(r ′) − E1

)
P0(r

′) dr ′. (7.9)

Now the probability density P̃ (r) in the scattering domain is normalised by the asymptotic
behaviour of equation (2.1), whereas the corresponding P(r) in the bound state case is
normalised requiring that the total probability is unity. The two densities are linked by the
Fäldt–Wilkin extrapolation theorem [6, 7] which states that, independent of the shape of the
potential, as k → iα

P (r) ≈ 2α(α 2 + k2) P̃ (r) + O
(
α 2 + k2

)
. (7.10)

Inserting equation (2.8) into the first-order shift of equation (7.5) gives

E1 = 2α0

k
(α 2

0 + k2)
1

2α0(α
2
0 + k2)

k

∫ ∞

0
W(r) P0(r) dr (7.11)

where the limit k → iα0 is understood. This leads immediately to the standard result of
equation (7.7), as shown already in [7].

However, starting from equation (7.6) to carry out the same procedure for the second
order, we find that

E2 = −
∫ ∞

0

{
1

P0(r)

[
Q(r) − E1

∫ r

0
P0(r

′) dr ′
]2

− E 2
1

P free
0 (r)

}
dr − E 2

1

4α 2
0

. (7.12)

If E1 = 0, then this is just the bound state result of equation (7.8). However, this is no longer
true when E1 �= 0. The discrepancy is due in part to the neglect of higher-order terms in
α2 +k2 in equation (7.10). Such terms, which depend upon the details of the potential [7], give
non-vanishing model-dependent contributions in the translation of δ 2

1 to E 2
1 . Corrections of

the same order arise from the non-singular part of δ1 in equation (7.4) and this depends upon
the form of G(k) near the pole. Thus, although we have established the major term in the
expression for E2, further work would be required if one wanted to establish completely the
second-order shift in the bound state region from the corresponding formula in the continuum.

Of course, if one knew P̃0(r) as a function of k then one could evaluate the phase shift
corrections δ1 and δ2, using equations (2.8) and (3.8), and then extrapolate into the bound-state
region. This corresponds, however, to knowing the higher-order terms in equation (7.10).

8. Conclusions

The study of time-independent perturbation theory within the framework of the quantum
probability equation has been extended from the bound state region to the scattering domain.
Formulae for the changes in a phase shift of arbitrary angular momentum, when a spherically
symmetric potential is subjected to a spherically perturbation, are derived up to third order in
the perturbation.

The results are economic to evaluate; the second-order shift of equation (3.8) requires
only a two-dimensional integration mesh. This is very similar to the effort needed to estimate
the second-order bound-state energy shift from equation (7.8). Indeed there is a very close
relation between the two second-order corrections, though further work is required to derive one
unambiguously from the other. In both cases the changes depend purely upon the perturbing
potential and the unperturbed probability density; the unperturbed potential does not occur
explicitly in our formulae. A soluble example is given illustrating this feature. Unfortunately,
most problems of a practical interest have to be solved numerically.
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Another soluble problem investigated is that of a centrifugal barrier �(� + 1)/r2, where
the value of � is perturbed slightly. The success here suggests that knowing the probability
density and phase shift for one value of the angular momentum might allow one to estimate
the phase shift for another value of � using perturbation theory.

We defer to a third publication consideration of problems where one takes the energy as
a perturbation. It seems, however, that in principle, knowing the probability density at one
energy and angular momentum, it should be possible to evaluate the phase shift at a different
energy and angular momentum as a series of quadratures using perturbation theory.
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